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This paper deals with flexural vibrations of a continuous slender shaft with a
crack located at a distance ln from the left end of the shaft. The mathematical
model of this problem is formulated by means of the large finite element method
(LFEM). The crack effect is modelled by a switching crack [1] (Jun et al. 1992
Journal of Sound and Vibration 155, 273–290). The increase in crack depth causes
decrease in bending stiffness, whereas the non-linearity is related to opening and
closing of the crack faces in the process of flexural vibrations (the so called crack
‘‘breathing’’). These are generated by the rotating shaft unbalance and by
deflection due to shaft own weight. As the zero approximation of the solution a
linearized model is used, in which a permanently opened crack is assumed. Based
on this simplified model a condition is given discriminating whether the crack
remains permanently open/closed during the shaft rotation or it ‘‘breathes’’. For
the first approximation of the solution of the non-linear mathematical model the
averaging method, based on the small parameter theory, is used. The theoretical
results are illustrated by calculation of the amplitudes and phases of the first,
second and third harmonics of the forced shaft flexural vibrations.
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1. INTRODUCTION

As can be seen from review studies, for example from references [2, 3], various
aspects of vibration of mechanical systems with a crack have been thoroughly
studied in the last 25 years by a number of authors. From a practical point of view,
the investigations were mainly focussed on vibrations of beams and shafts with
transverse crack.

Kikidis and Papadopoulos [4] treated a clamped–clamped beam of circular
cross-section with a permanently open crack. The crack was described by a 2×2
compliance matrix. The transverse vibrations were calculated analytically by using
both the Euler–Bernoulli beam approach and the Timoshenko beam approach.
They compared the influence of crack depth on beam natural frequencies of both
models in relation to the beam slenderness ratio.

Shen and Chu investigated [5] vibrations of an Euler–Bernoulli beam with a
periodically opening and closing (i.e., ‘‘breathing’’) transverse crack. When the
crack was closed, the same equations as for the beam without a crack were valid.
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In case of an opened transverse crack they stipulated a theoretical course of stress
and strain in the crack vicinity. Using the extended Hu–Washizu variation
principle they derived a partial differential equation and boundary conditions for
this particular case. Discretization and transformation into a set of ordinary
differential equations was provided by expansion using eigenfunctions and
Galerkin’s principle.

Detailed investigation of processes in a breathing crack was undertaken by
Abraham and Brandon [6]. As they also investigated the shear forces’ influence
on the crack behaviour, they used for analysis of transverse vibrations the
Timoshenko beam model. They sought analytical solutions, separately for the
open crack and closed crack cases.

Non-linear effects caused by flexural vibrations of slender beams with a
breathing crack were investigated by Actis and Dimarogonas [7]. The
discretization was facilitated by a FEM method, where the crack was modelled
by a special finite element. This element accounted for full bending stiffness in the
case of the closed crack and a reduced stiffness in the case of the open crack. The
solution in the form of expansion into the set of eigenfunctions of the beam
without a crack was sought and the crack influence was described by small
perturbation terms. The set of non-linear equations obtained in this way was then
solved numerically.

A similar problem was also investigated by Ballo [8]. He used a similar approach
to discretization, the difference being in the way of solving the set of discrete
non-linear ordinary differential equations obtained. An approximate analytical
method, employing the small parameter approach, was used, which is also suitable
for analysis of stability problems.

The problem becomes more complicated if instead of a fixed beam a rotating
shaft with a transverse crack is assumed. Flexural vibrations of a Laval rotor with
a permanently opened crack and with a so-called switching crack in the place of
the massive disc were treated by Papadopoulos and Dimarogonas [9]. The open
crack was modelled by decreased flexural stiffness in two mutually perpendicular
directions in the crack position, whereas the closed crack had the same flexural
stiffness as the intact shaft. The authors mainly investigated parametric excitation
due to different flexural stiffness in the crack position. Non-linear effects were
treated in less detail.

Also the work of Jun et al. [1] dealt with flexural vibrations of a Laval rotor.
They also introduced a coupling stiffness between the two mutually perpendicular
directions of different transversal flexural stiffnesses. In this way they attempted
to describe a continuously opening and closing crack. After a thorough analysis
they concluded that in most cases the switched crack approach is a sufficiently
accurate approximation of the more general breathing crack case. The
contribution of this paper is the consideration of influence of the position of a
rotor unbalance, as well as the influence of gravitational acceleration (weight) in
the case of horizontally situated rotors. They also derived the conditions when the
crack is permanently open, conditions when it is permanently closed and when the
crack is breathing.
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Of fundamental theoretical importance is the work of Wauer [10]. Here the
equations and boundary conditions of a rather general mechanical model of a
cracked rotating shaft are derived. Both the permanently open crack and a
breathing crack are subjected to thorough analysis. The aim of the derivations is
to prepare the fundamentals for possible use of direct variation methods. As an
illustrative example the analysis of torsional vibrations of a rotating shaft of
circular cross-section with a circumferential crack is given.

Valuable knowledge on vibrations of rotors, as well as verification of theoretical
investigations, brought about experimental research in this field. In reference [11]
the behaviour of a rotating shaft was studied, whereas reference [12] dealt with
an experimental investigation of the initialisation of cracks in large scale lattice
structures. Muszynska introduced [13] an effective monitoring system for the
detection of transverse cracks in shafts of rotating machines. The experimental
results were based on a large scale thorough theoretical investigation of rotors in
which the rotor unbalance and deflection due to own mass were also accounted
for.

In the literature only limited attention has been paid to the investigation of the
non-linear effects due to flexural vibrations of slender bodies with breathing cracks
[7, 9]. They were mostly limited to the numerical investigation of the problem.
However, the experimental studies [12, 13] have shown the significance of the
non-linear effects to the crack detection at a very early stage.

Therefore, in this paper non-linear effects occurring in flexural vibration of
slender straight massive rotating shafts supported by two short bearings with a
breathing crack, modelled in a simplified form by a switching crack [1, 4, 5, 7, 9]
will be investigated. The influence of damping, gyroscopic effects and influence of
the hydrodynamic effects in journal bearings will be neglected. The mathematical
description and discretization of the model will be performed by a modified FEM
method, in which a more precise way of description of the rotating shaft boundary
conditions will be taken into account. After transformation of the system of
equations from the rotating co-ordinate system into the stationary coordinate
system, a discrete non-linear matrix equation with varying coefficients is obtained.
For a low depth crack it is possible to assume that the non-linear and time
dependent terms are small enough to allow the problem to be solved by an
approximative analytical method, by using the small parameter approach [14–16].
The advantage of this method is, among others, the possibility to investigate the
questions of rotating system dynamic stability.

By the approach introduced, the courses of amplitudes of various harmonic
components of forced flexural vibrations of the shaft, caused by the rotor
unbalance and bending deflection due to its own mass were calculated. The
conditions under which the crack is either fully open or fully closed or periodically
breathes while the shaft is rotating were also determined.

2. PROBLEM ANALYSIS

The shaft is schematically depicted in Figure 1. The shaft will be divided into
two fields: one from the left bearing to the transverse crack and the second one
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from the crack to the right bearing. The crack itself is located at distance ln from
the left end of the shaft.

It is assumed that the crack opens and closes within one shaft revolution; i.e.,
the so called ‘‘breathing crack’’ case is considered [1, 6, 9]. However, it is assumed
that with sufficient accuracy the crack could be modelled as the so called
‘‘switching crack’’ [1]. The Cartesian co-ordinate system j, h, fixed with the
rotating shaft will be oriented so that the smallest bending stiffness of the open
crack kj will be assigned to the j-axis and the other bending stiffness in the
perpendicular direction kh will be assigned to the h-axis. The values of both
stiffnesses are determined by the procedure described in reference [17]. Hence, the
bending moments carried by the open crack are:

Mj =−kj (j'p − j'n ), jp (ln , t)0 jn (ln , t)q 0, (1a)

Mj =−kh (h'p − h'n ). (1b)

In the case of a closed crack it will be assumed, according to reference [1], that
it carries the same bending moments in respect to two perpendicular axes j, h as
the intact shaft. To simplify the mathematical derivations further with a certain
approximation, it is assumed that the condition of the intact shaft could be
described by a bending stiffness in the crack position, which is substantially larger
than the bending stiffness of the open crack. Therefore, for the case of a closed
crack the following bending stiffness in the crack location is assumed:

kj + kjN . (1c)

In these expressions the (prime) denotes differentiation with respect to the
variable z and j'n , j'p , h'n , j'p , denote the respective displacement derivatives at the
crack location from the side of the respective shaft field.

In Figure 1 m (kgm−1) denotes the mass density of the shaft, and EJ (kgm2 s−2)
denotes the bending stiffness. The meaning of other variables is clearly seen from
Figure 1, which depicts the situation in the j–z plane. In the h–z plane the situation
is much the same.

Non-linear effects and the effects related to different bending stiffness in the two
perpendicular directions for this case of flexural vibration of a slender shaft will
be analyzed by means of a method of small parameter theory [15, 16]. This
approach, as well as similar approaches in the zero order approximation of the
non-linear problem, starts with the linear system. Hence, in the first instance the
flexural vibrations will be analyzed for the case of a permanently opened crack.

Figure 1. Cracked uniform slender shaft.
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The equation of motion of the mechanical system defined in this way will be
formed in the co-ordinate system rotating synchronously with the shaft around the
z-axis by application of the large finite elements method (LFEM [18]). The shaft
deformation in two perpendicular directions in both shaft fields will be, according
to this method, approximated by the following expressions:

jn (zn , t)= pn1(zn ) · j(1, t)+ pn2(zn ) · j'n (1, t)+ qn (zn ) · Xn (t), (2a)

jp (zp ,t)= pp1(zp ) · j(1, t)+ pp2(zp ) · j'p (1, t)+ qp (zp ) · Xp (t), (2b)

hn (zn , t)= pn1(zn ) · h(1, t)+ pn2(zn ) · h'n (1, t)+ qn (zn ) · Yn (t), (2c)

hp (zp , t)= pp1(zp ) · h (1, t)+ pp2(zp ) · h'p (1, t)+ qp (zp ) · Yp (t), (2d)

zn =(z/ln )+1, zp =1− z/lp . (3a, b)

In these expressions the primes denote spatial derivatives with respect to the new
spatial co-ordinates zn , zp for the left and the right shaft fields, respectively. The
functions pni (zn ), ppi (zp ), for i=1, 2 are Hermitian polynomials, which satisfy the
essential boundary conditions on the ends of both fields, and qn (zn ), qp (zp ) are
additional, improving co-ordinate functions. These functions are defined by the
following boundary problems:

qIV
n + l4qn =0, qn (0)0 q0n (0)0 qn (1)0 q'n (1)=0, (4a)

qIV
p + l4qp =0, qp (0)0 q0p (0)0 qp (1)0 q'p (1)=0. (4b)

In principal more additional, improving co-ordinate functions could be used,
but for the problem treated one additional co-ordinate function is sufficient.

The unknown time functions in equations (2a–2d) for both perpendicular
directions can be arranged into two column vectors:

w=wj +iwh , (5)

According to the LFEM method the matrix equation for the calculation of the
unknown complex column vector w has the form

Mẅ−2ivMẇ+$EJ
ml4

K+
C(kj + kh )

2ml3
−v2M% w+

C(kj − kh )
2ml3

w̄=F, (6)

where F=Fj +i · Fh is the column matrix of excitation time functions which are
generated by the rotor weight and unbalance and w̄ is the complex conjugate of
the vector w.

The rectangular symmetric fifth order matrices M, K, C in equation (6) are
related to the scalar products of the co-ordinate functions.

The only observable shaft flexural vibrations are those which manifest
themselves in the stationary co-ordinate system. Therefore, equation (6) has to be
transformed from the rotating co-ordinate system j, h, z into the stationary
co-ordinate system x, y, z. The unknown time functions will be arranged into
vectors vx , vy in the stationary co-ordinate system, whose structure is similar to the
structure of vectors wj , wh defined in the rotating co-ordinate system. The two
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vectors can be united into one complex vector v. The transformation is furnished
by the equation

w= v eivt. (7)

After this transformation the matrix equation for calculation of the unknown
complex vector v will have the form

Mv̈+$EJ
ml4

K+
(kj + kh )

2ml3
C% v+

kj − kh

2ml3
C · e−2ivt v̄=F e−ivt. (8)

3. THE NON-LINEAR CASE

In the case of a permanently opening and closing transversal crack in the rotor,
the system becomes non-linear. This non-linearity is manifested in the rotor
mathematical model by inclusion of a further term MN on the left side of equation
(6). After transformation into the stationary co-ordinate system a new term of the
form −MN · e−ivt appears on the right side of equation (8). If one supposes that
the emerging crack is only slightly developed, this term could also be considered
to be small. In the same way the last term on the left side of equation (8) could
also be considered to be small, because it is a difference of two stiffnesses of
approximately the same value. Both terms can be formally re-arranged into one
column matrix oC, where o is a small parameter. This column matrix has the form

oC=
kh − kj

2ml3
C e−2ivt − oMN e−ivt. (9)

Then the complete equation, describing the non-linear case in the stationary
co-ordinate system will have the form

Mv̈+$EJ
ml4

K+
kj + kh

2ml3
C% v=F e−ivt + oC. (10)

For further discussion it is important to establish the conditions when the shaft
will rotate with the permanently open crack or the crack will open and close during
one revolution of the shaft. These conditions could be established by detailed
analysis of equation (1a), especially of the condition (jp − jn )E 0 in the position
of the crack. If the discussion is limited to the frequency range in which the flexural
deformation could be approximated mainly by the first eigen-function it could be
shown that the crack will be closed if the following condition is fulfilled:

j(1, t)0
v2

=v2
01 −v2= v

T
01Fj −

vT
01 · Fg

v2
01

sin (vt)E 0. (11)

In this equation, v01 is the first eigenvector and v01 is the first circular
eigenfrequency of the linearized system and v is the shaft circular rotational
frequency. The column vector Fj depends on dynamical rotor unbalance in the z–j

plane and the column vector Fg depends on the rotor weight.
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From equation (11) the influence of respective factors on crack opening and
closing can be clearly seen. If the shaft is not very well balanced dynamically, and
rotates with a circular frequency v which is rather near to the first natural circular
frequency v01, the first time-independent term is dominant and the crack is
permanently opened or closed. The crack could change its shape during one
revolution, that is the crack ‘‘breathes’’, only if the second term in equation (11)
dominates. This situation could occur if the operational circular rotational
frequency of the shaft v differs sufficiently from the first natural circular
frequency, or if the shaft is very well balanced dynamically, i.e., the excitation force
Fj is rather small.

In the following discussion of the non-linear factors’ influence and manifestation
it is assumed that the crack opens and closes regularly during one revolution of
the shaft. Let the time interval, during which the crack is closed, be described by
the relation

tcl =D1/v. (12)

The time interval tcl is given by the condition that the left side of equation (11)
is zero.

Further solution of the non-linear equation (10) is based on the use of the
averaging method of reference [16]. To be able to use this method it is necessary
to transform equation (10) into the standard form in which all the time derivatives
of the sought unknown functions are small and proportional to a small parameter.
It is considered, in line with reference [14], that in the linearized form (for o=0)
no internal resonance exists. Hence, in the vicinity of the first natural circular
frequency v01 the mono-frequency solution can be used, which is approximated
by the first natural form of the shaft flexural vibrations v01. The solution of the
non-linear equation (10) will be sought in the form

v= v01[u(t)+ s(t)]. (13)

By multiplication of equation (10) from the left side by the vector vT
01,

substitution from equation (13) and use of orthogonality relations, equation (10)
transforms into

ü+ s̈+v2
01(u+ s)= vT

01F e−ivt + vT
01oC. (14)

The complex time variable u(t) is the steady-state solution of

ü+v2
01u= vT

01F e−ivt 0v2vT
01(Fj0 + iFh0) e−ivt + ivT

01Fg . (15)

In equation (15) the first term on the right side describes the effect of unbalance,
whereas the second term is the rotor deflection due to its own weight. As a
consequence of equation (15), equation (14) transforms into

s̈+v2
01s= ovT

01C0 ovT
01(CR +i · CI ). (16)

A small distortion od between the first natural circular frequency v01 and an
integer multiple p or integer ratio q of the shaft operational circular rotational
frequency v, is introduced into equation (16) by the following formula [14, 16]:

v01 = (p/q)v+ od. (17)
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Hence, one obtains the following equation, whose accuracy is of the order of the
first power of o:

s̈+0pq v1
2

s=−o2d
p
q

vs+ ovT
01C. (18)

Equation (18) is transformed by the complex transform s= sR +i · sI into four first
order equations:

sR = aR (t) cos cR , ṡR =−
p
q

vaR (t) sin cR , (19a, b)

sI =−aI (t) sin cI , ṡI =−
p
q

vaI (t) cos cI , (19c, d)

cR =
p
q

vt+ qR (t), cI =
p
q

vt+ qI (t), (20a, b)

After re-writing these equations the standard form is obtained:

ȧR =
o

( p/q)v 62d
p
q

vaR cos cR sin cR − vT
01CR sin cR7 , (21a)

q� R =
o

( p/q)vaR 62d
p
q

vaR cos2 cR − vT
01CR cos cR7 , (21b)

ȧI =
o

( p/q)v 6−2d
p
q

vaI cos cI sin cI − vT
01CI cos cI7 , (21c)

q� I =
o

( p/q)vaI 6−2d
p
q

vaI sin2 cI − vT
01CI sin cI7 . (21d)

By inspection of these equations it follows that the variation of these four sought
unknown functions aR , qR , aI , qI , in time is rather small. Hence, the dominant
influence on their right sides has the steady term augmented by small,
time-dependent terms. Therefore, in the first approximation, the right side of the
standard form equations (21) can be replaced by these constant terms, which do
not explicitly depend on time. This can be accomplished by time-averaging of the
right sides according to the explicitly present time. As a steady state solution is
sought the unknown functions have to be constants and their respective time
derivatives have to be zeros. Hence, a system of four non-linear algebraic
equations can be formed in this way for the approximate calculation of two
vibration amplitudes aR , aI and two corresponding phase angles qR , qI . To which
component these amplitudes and phases belong to depends on the choice of
integers p and q.
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4. NUMERICAL EXAMPLES

In this paper two cases are considered in some detail: (i) p=2 and q=1, i.e.,
the second harmonic component to the rotational circular frequency v; (ii) p=3
and q=1, i.e., the third harmonic component to the rotational circular frequency
v.

Both cases are described by different, rather complicated, sets of non-linear
algebraic equations. For the sake of simplicity only the set for the description of
the second harmonic components are given, as follows:

D1

2v
{[G1 −G2] cosqR +G3aR sin2 qR −G8aI sin (qR + qI )}−

D2

2v
G12 cos qR =0,

(22a)

d+
D1

2vaR
{[G2 −G1] sin qR +G4aR −G5aR cos2 qR −G8aI cos (qR + qI )}

−
D2

2vaR
G12 sin qR =0, (22b)

−
D1

2v
{[G7 −G6] cos qI +G8aR sin (qR + qI )+G9aI sin2 qI}−

D2

2v
G12 cos qI =0,

(22c)

−d−
D1

2vaI
{[G7 −G6] sin qI −G8aR cos (qR + qI )+G10aI +G11aI cos2 qI}

−
D2

2vaI
G12 sin qI =0. (22d)

In these equations the components Gi (i=1, 2, . . . , 12) of the real vector G are
complicated functions of the time interval during which the crack is closed (the
variable D in expression (12)), system tuning and rotor unbalance. The constant
D1 is related to non-linear effects, whereas the constant D2 is related to the effect
of different rotor stiffness in respect to the mutually perpendicular axis j, h when
the crack is open. They are given by

D1 =
bNkj

ml3
vT

01Cv01, D2 =
kj − kh

2ml3
vT

01Cv01, bN =1+
kjN

kj

. (23a–c)

For illustration the course of all four sought variables as a function of the
relative crack depth a/R was numerically calculated. The calculations were made
for a rotating shaft with the following properties: m=61·3 kg m−1,
E=2·06×1011 N m−2, the relative rotor radius R/l=0·025, the relative crack
position in respect to the left end of the shaft ln /l=0·4, the non-linearity coefficient
bN =20.

The steady state values of both amplitudes aR , aI of the second harmonic
component as a function of the relative crack depth a/R, calculated according to
formulas (22), are depicted in Figure 2. The respective phase angles qR , qI did not
change in respect to the relative crack depth and remained at the values qR =−p/2
and qI = p/2. For comparison the first harmonic components at the rotational
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Figure 2. Steady state values of amplitudes aR , aI of the second harmonic component generated
by the influence of non-linearity and the different rotor stiffness at the position of the crack as a
function of the crack depth ratio a/R.

frequency (the zero order approximation) had in both perpendicular directions the
same value, expressed numerically as 86·36×10−6 m.

According to equation (23a) the coefficient bN is part of the D1 constant. If this
constant is set to zero the influence of non-linearity is eliminated and only the
influence of different rotor stiffness on both sides of the permanently open crack
is considered. In that case both amplitudes of the second harmonic component are
the same. Their dependence on the relative crack depth is depicted in Figure 3.
Both phase angles in this case are the same and have a rather small value.

Figure 3. Steady state values of amplitudes aR , aI of the second harmonic component generated
by the influence of the different rotor stiffness at the position of the crack as a function of the crack
depth ratio a/R.
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Figure 4. Steady state values of amplitudes aR , aI of the third harmonic component generated by
the influence of non-linearity and the different rotor stiffness at the position of the crack as function
of the crack depth ratio a/R.

The course of both amplitudes of the third harmonic component in dependence
on the relative crack depth is depicted in Figure 4. Both phase angles for this case
were again the same and equal to zero.

The comparison of the courses of the second and third harmonic components
reveals that their dependence on the relative crack depth is rather strong, whereas
the eigenfrequencies of the linearized system are much less dependent on the crack
depth. So, if the system is suitably tuned for an emerging crack with a depth of
5% of the shaft radius, an increase in the amplitude of both the second and third
harmonic components could be already observed, whereas the value of v01 changes
by only 0·16%: i.e., only negligible.

5. CONCLUSION

In this paper a mathematical model of flexural vibrations of a slender massive
rotating shaft with a crack was derived by the application of the large finite
element method under some simplifying conditions. The non-linear model with
time dependent coefficients was formulated in such a way as to be solvable by the
small parameter method. The corresponding matrix equation was transformed
into standard form, which could be solved by the averaging method of reference
[16]. Based on this approach a set of non-linear algebraic equations for the second
and third harmonic components of the shaft rotational frequency was elaborated.
From these equations the amplitudes and phase angles of these components could
be calculated.
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5. CONCLUSION

In this paper a mathematical model of flexural vibrations of a slender massive
rotating shaft with a crack was derived by the application of the large finite
element method under some simplifying conditions. The non-linear model with
time dependent coefficients was formulated in such a way as to be solvable by the
small parameter method. The corresponding matrix equation was transformed
into standard form, which could be solved by the averaging method of reference
[16]. Based on this approach a set of non-linear algebraic equations for the second
and third harmonic components of the shaft rotational frequency was elaborated.
From these equations the amplitudes and phase angles of these components could
be calculated.
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